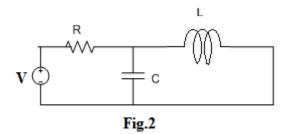

Q.2 a. In the circuit of Fig. 1, $V_A = 2V$, $I_A = 2A$, $R_1 = 4\Omega$ and $R_2 = 3\Omega$. Find the Thevenin equivalent voltage V_{th} and impedance Z_{th} for the network to the left of terminals 1, 2.

Answer:

$$P:2$$

Q., with terminals 1-2 open circuited, no current flows through R_2 , by using KVL
 $Vth = V_{12} = V_A + I_A R_A = 2 + (2xu) = 10 V$.


(2x3)

The With VA replaced by a short and IA

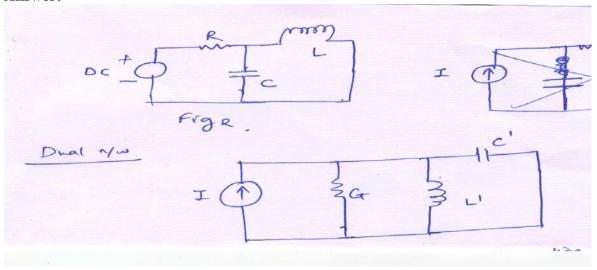
replaced by an open circuit.

 $Vth = R_{11} = R_{11} + R_{12} = 4 + 3 = 7D$.

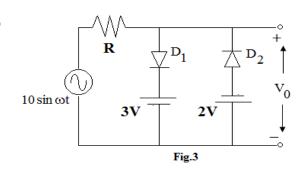
b. Explain Duality. Obtain dual network for the circuit shown in fig.2.

Answer:

Duality: - Metworks which have identical describing differential equations are known as dual of each other, and the concept is known as buality.


es. dual of elements

R + 4 voltage source + current source,


L + C

Q.3 a. Draw and explain switching characteristics of a diode.

Answer:

b. Plot the output voltage V_0

Answer: Topic 1.14 of Text Book 1

- c. Write short note on:
 - (i) Transition and Diffusion capacitance
 - (ii) Zener diode as voltage regulator

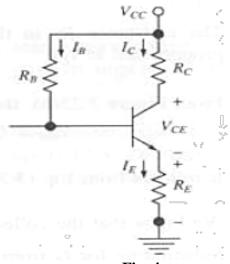
Answer: Topic 1.13 of Text Book 1

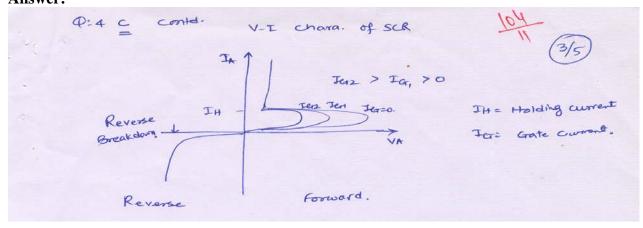
Q.4 a. Explain the construction and operation of a n-channel E-MOSFET with suitable diagram and characteristics.

Answer: Topic 2.3 of Text Book 1

- b. The transistor of Fig.4 is provided with the fixed and self biased emitter resistance with Rc = 4 k Ω , R_E = 2 k Ω , V_{cc} = 32 V and I_c = 4 mA.
 - (i) Calculate the value of R_B if $\beta = 100$
 - (ii) What will be the percentage change in I_C if actual β =40?

DEC 2013




Fig. 4

Answer:

	Condition.	Emittar Junction	Collector jus	application application
リ	IFR	FB	RB	Active> Amplification
(ii)	IFF	FB	FF	Saturation - Closed switch
(m)	TIRR	RB	RB	Cut-off -> open switch
W I	V RF	RB	FB	Inverted -> Notused.
			C: Very poor	transistor action)

c. Draw V-I characteristics of an SCR.

Answer:

Q.5 a. Draw the small-signal model of Emitter follower and obtain the expression of voltage gain, current gain, input impedance and output impedance.

Answer:

$$\frac{O.5}{O.} \quad \text{Griven.} \quad Rc = 4 \text{ K.P.} \quad Re = 2 \text{ K.P.} \quad \text{Vce} = 32 \text{ V and } \quad \text{Tc} = 4 \text{ mA.}$$

$$\frac{O.5}{O.} \quad \text{Value} \quad \text{of } R8 \quad \text{if} \quad \beta = 100. \quad \text{(ii) Actual} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.} \quad \text{Tatial} \quad \beta = 40 \text{; AIc} = ?$$

$$\frac{O.5}{O.}$$

b. Explain working of a Darlington pair amplifier in detail.

Answer: Topic 3.9 of Text Book 1

c. Write short note on CMOS.

Answer: Topic 3.2 of Text Book 1

a. Explain working of tuned amplifier. Also state its merit and application. **Answer:** Topic 4.4 of Text Book 1

b. A certain BJT transistor has $r_{\pi} = 2 \text{ k}\Omega$ and $\beta = 50$ at 1MHz and $\beta = 2.5$ at 20MHz. Determine f_T , f_{β} and C_{π} .

Answer:

c. Write short note on cascaded amplifiers.

Answer: Topic 4.6 of Text Book 1

a. Compare Class A, Class B, Class AB and Class C power amplifiers.

Answer: Topic 5.5 of Text Book 1

b. State performance parameters of power amplifier.

c. A transistor supplies 2W for a 5 k Ω load. The zero-signal dc collector current is 35 mA and rises to 40 mA when signal is applied. Determine the percent second- harmonic distortion.

Answer:

C) Te=35mA

B2=B0=5mA.

B2=B0=5mA.

Second harmonic distortion.

P1= B1 RL

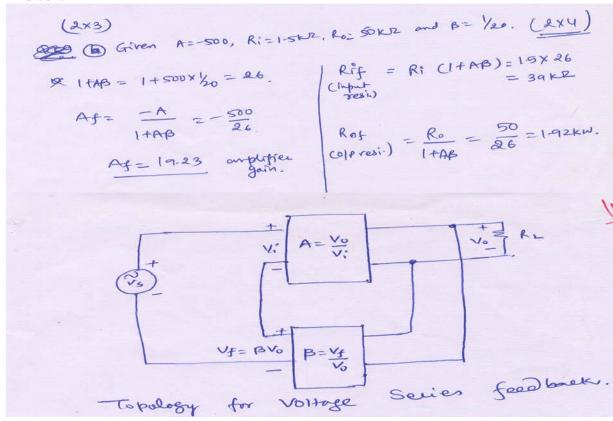
P1= B1 RL

B1= 28.3mA

B2=B0=5mA.

Second harmonic distortion.

$$D_2 = \left| \frac{B_2}{B_1} \right| \times \frac{5}{28.3} \times 10^{5}$$
 $D_3 = \frac{17.667}{8} \times 10^{5}$


Av.

Q.8 a. Define feedback. Which type of feedback is used for oscillator circuit? Discuss feedback's effect on input and output impedance.

Answer:

b. A voltage series feedback amplifier has the following data: A = -500, R_i = 1.5 $k\Omega$, R_o = 50 $k\Omega$ and $~\beta$ = (1/10). Calculate amplifier gain, input and output resistances. Also draw topology for the same

Answer:

- **Q.9** a. Write short notes:
 - (i) Integrated resistors
 - (ii) Integrated capacitors

Answer: Topic 9.9 & 9.10 of Text Book 1

b. State characteristics of IC components.

Answer: Topic 9.12 of Text Book 1

c. State levels of integration of IC fabrication.

Answer: Topic 9.14 of Text Book 1

TEXT BOOK

Electronic Devices and Circuits, I. J. Nagrath, PHI (2007)