Q. 2 a. In the circuit of Fig. $1, \mathrm{~V}_{\mathrm{A}}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{A}}=2 \mathrm{~A}, \mathrm{R}_{1}=4 \Omega$ and $\mathrm{R}_{2}=3 \Omega$. Find the Thevenin equivalent voltage $\mathrm{V}_{\text {th }}$ and impedance $\mathrm{Z}_{\text {th }}$ for the network to the left of terminals $1,2$.

Fig. 1
Answer:
Q: 2
a. Kith terminals 1-2 open circuited, no current flows

$$
\begin{aligned}
Z_{\text {th }}- & \text { with } V_{A} \text { replaced by a short and IA } \\
& \text { replaced by an open circuit. } \\
Z_{\text {th }}= & R_{T h}=R_{1}+R_{2}=4+3=7 \Omega .
\end{aligned}
$$

b. Explain Duality. Obtain dual network for the circuit shown in fig.2.

Fig. 2

Answer:

$$
\begin{aligned}
& \text { through } R_{2} \text {, by using kVL } \\
& \text { (2×3) } \quad V_{\text {th }}=V_{12}=V_{A}+I_{A} R_{1}=2+(2 \times 4)=10 \mathrm{~V}
\end{aligned}
$$

Duality :- Networks which have identical describing differential equations are known as dual of each other, and the concept is known as DUALITY.
es. deal of elements

$$
R \leftrightarrow C_{C} \text { voltage source } \leftrightarrow \text { current source, }
$$

Q. 3 a. Draw and explain switching characteristics of a diode.

Answer:

Dual N / w

b. Plot the output voltage V_{0}

Answer: Topic 1.14 of Text Book 1
c. Write short note on:
(i) Transition and Diffusion capacitance
(ii) Zener diode as voltage regulator

Answer: Topic 1.13 of Text Book 1
Q. 4 a. Explain the construction and operation of a n-channel E-MOSFET with suitable diagram and characteristics.
Answer: Topic 2.3 of Text Book 1
b. The transistor of Fig. 4 is provided with the fixed and self biased emitter resistance with $\mathrm{Rc}=4 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{E}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{cc}}=32 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{C}}=4 \mathrm{~mA}$.
(i) Calculate the value of R_{B} if $\beta=100$
(ii) What will be the percentage change in I_{C} if actual $\beta=40$?

Fig. 4

Answer:

c. Draw V-I characteristics of an SCR.

Answer:

Q. 5 a. Draw the small-signal model of Emitter follower and obtain the expression of voltage gain, current gain, input impedance and output impedance.

Answer:

$$
\begin{aligned}
& \begin{array}{l}
\text { Q.5 Given. } R_{C}=4 k R \quad R_{E}=2 k R \quad V C e=32 \mathrm{~V} \quad \text { and } \quad I_{C}=4 \mathrm{~mA} \text {. } \\
\text { (a). } \\
\text { (i) value of } R B
\end{array} \\
& \text { (i) Value of } R_{B} \text { if } \beta=100 \text { (ii) lethal } \beta=40 ; \Delta I C=\text { ? } \\
& \begin{array}{ll}
I_{B}=\frac{I_{C}}{\beta}=\frac{4}{100}=0.04 m A . & 32=580 I_{B}+0.7+\left(I_{B}+4\right)^{2} \\
& \because I_{B}=0.04 \mathrm{~mA}
\end{array} \\
& V_{C C}=I_{B} R_{B}+V_{B E}+\left(I_{B}+I_{C}\right) R_{E} \\
& 32=0.04 \times \mathrm{R}_{3}+0.7+(0.04+0.04)^{2} \\
& \triangle I C=4-1.6=2.4 \mathrm{~mA} \\
& =60 \% \text { Reduction. } \\
& \therefore R_{3}=580 \mathrm{kR}
\end{aligned}
$$

b. Explain working of a Darlington pair amplifier in detail.

Answer: Topic 3.9 of Text Book 1
c. Write short note on CMOS.

Answer: Topic 3.2 of Text Book 1
Q. 6 a. Explain working of tuned amplifier. Also state its merit and application.

Answer: Topic 4.4 of Text Book 1
b. A certain BJT transistor has $\mathrm{r}_{\pi}=2 \mathrm{k} \Omega$ and $\beta=50$ at 1 MHz and $\beta=2.5$ at 20 MHz . Determine $\mathrm{f}_{\mathrm{T}}, \mathrm{f}_{\beta}$ and C_{π}.
Answer:

$$
\begin{aligned}
& \text { (b) Given } \gamma_{\pi}=2 \mathrm{~kL} \& \beta=50 \text { at } 1 \mathrm{Mtz} \text {. } \\
& \beta=2.5 \text { at } 20 \mathrm{Mtz} \text {. } \\
& f_{T}=\beta f_{B}=B_{F}-f \\
& f_{T}=2.5 \times 20=50 \mathrm{MHz} \text {. } \\
& f_{B}=\frac{f_{T}}{\beta}=50 / 50=1 \mathrm{MHz} . \\
& f_{B}=\frac{1}{2 \pi c_{n}^{2} \gamma_{\pi}} \\
& 1 \times 10^{6}=\frac{201}{2 \pi c_{\pi} 2 \times 10^{3}}
\end{aligned}
$$

c. Write short note on cascaded amplifiers.

Answer: Topic 4.6 of Text Book 1
Q. 7 a. Compare Class A, Class B, Class AB and Class C power amplifiers.

Answer: Topic 5.5 of Text Book 1
b. State performance parameters of power amplifier.

Answer:

i) Collector efficiency = ac power, output/dc power input.
ii) Distortion -
iii) Power dissipation capability.
c. A transistor supplies 2 W for a $5 \mathrm{k} \Omega$ load. The zero-signal dc collector current is 35 mA and rises to 40 mA when signal is applied. Determine the percent second- harmonic distortion.
Answer:

$$
\begin{aligned}
& \text { (c) } I_{c}=35 \mathrm{~mA} \\
& I_{c}+B_{0}=40 \mathrm{~mA} \\
& \text { re. } B_{0}=Y_{1} 0.35=5 \mathrm{~mA} \\
& P_{1}=B_{1}^{2} \frac{R_{L}}{2} \\
& \therefore B_{1}=28.3 \mathrm{~mA}
\end{aligned}
$$

Q. 8 a. Define feedback. Which type of feedback is used for oscillator circuit? Discuss feedback's effect on input and output impedance.

Answer:

Q:8 (a)
Feedback :- The process by which a fraction of output
(olmark) its input is called feedibrek.

Type:- positive feedbrek:- Used for oscillator circuit. (olmark) negative feedbrek:- used for amplifier.
Restart:- Topic 6.4. Ret (F).
b. A voltage series feedback amplifier has the following data: $A=-500, R_{i}=$ $1.5 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{o}}=50 \mathrm{k} \Omega$ and $\beta=(1 / 10)$. Calculate amplifier gain, input and output resistances. Also draw topology for the same
Answer:
(2×3)

* $1+A B=1+500 \times \frac{1}{20}=26 . \quad \begin{aligned} \text { Rif }\end{aligned} \quad R_{i}(1+A B)=1.5 \times 26$

$$
A_{f}=\frac{-A}{1+A B}=-\frac{500}{26} .
$$

$$
\begin{array}{l|l}
=\frac{-A}{1+A \beta}=-\frac{500}{26} \\
A f=19.23 \text { arptifien }
\end{array} \left\lvert\, \begin{gathered}
\text { oof } \\
\text { colpresi.) }
\end{gathered}=\frac{R_{0}}{1+A \beta}=\frac{50}{26}=1.92 \mathrm{~kW} .\right.
$$

Q. 9 a. Write short notes:
(i) Integrated resistors
(ii) Integrated capacitors

Answer: Topic 9.9 \& 9.10 of Text Book 1
b. State characteristics of IC components.

Answer: Topic 9.12 of Text Book 1
c. State levels of integration of IC fabrication.

Answer: Topic 9.14 of Text Book 1

TEXT BOOK

Electronic Devices and Circuits, I. J. Nagrath, PHI (2007)

